
public class E extends F {
public void method2() {

System.out.print("E 2 ");
method1();

}
}

public class F extends G {
public String toString() {

return "F";
}

public void method2() {
System.out.print("F 2 ");
super.method2();

}
}

public class G {
public String toString() {

return "G";
}

public void method1() {
System.out.print("G 1 ");

}

public void method2() {
System.out.print("G 2 ");

}
}

public class H extends E {
public void method1() {

System.out.print("H 1 ");
}

}

public class EFGHclient {
public static void main(String[] args) {

G[] elements = {new F(), new E(), new G(), new H()};
for (int i = 0 ; i < elements.length ; i++) {

System.out.println(elements[i]);
elements[i].method1();
System.out.println();
elements[i].method2();
System.out.println();

}
}

}

Step 1 – Write/draw the class hierarchy

G

F

E

H

Class headers in the order shown:

public class E extends F {
public class F extends G {
public class G {
public class H extends E {

G F E H

toString()

method1()

method2()

In each cell we will put the expected output:
• If it is just a string, write it in double quotes to show it is a string
• If the class does not have this method, copy what its super class does
• If it has a method call:

• If it is super. then it is specific and copy what the super class method does
• If it is not super. then write the method call itself (not what it does) and circle it

List m
ethods in the order called

• List classes in order of inheritance starting with base class

• Draw arrows showing which class is the super/parent class

Step 2 – Write a method output table

G

F

E

H

Step 3 – Start with the base class and fill out the table for it.

G F E H

toString() “G”

method1() “G 1 “

method2() “G 2 “

In each cell we will put the expected output:
• If it is just a string, write it in double quotes to show it is a string
• If the class does not have this method, copy what its super class does
• If it has a method call:

• If it is super. then it is specific and copy what the super class method does
• If it is not super. then write the method call itself (not what it does) and circle it

public class G {
public String toString() {

return "G";
}

public void method1() {
System.out.print("G 1 ");

}

public void method2() {
System.out.print("G 2 ");

}
}

This is the base class, it has all the
methods, just write each in.

Step 3 – Continue with each of the child classes in order…

G F E H

toString() “G” “F”

method1() “G 1 “ “G 1 “

method2() “G 2 “ “F 2 G 2”

In each cell we will put the expected output:
• If it is just a string, write it in double quotes to show it is a string
• If the class does not have this method, copy what its super class does
• If it has a method call:

• If it is super. then it is specific and copy what the super class method does
• If it is not super. then write the method call itself (not what it does) and circle it

public class F extends G {
public String toString() {

return "F";
}

public void method2() {
System.out.print("F 2 ");
super.method2();

}
}

1) Has toString(), write it in
2) Does not have method1(),

copy from parent
3) Has method2(), with a print

and a super. method call, write
in the print output and
add/copy in G’s method2()

Step 3 – Continue with each of the child classes in order…

G F E H

toString() “G” “F” “F”

method1() “G 1 “ “G 1 “ “G 1 “

method2() “G 2 “ “F 2 G 2” “E 2 “ + method1()

In each cell we will put the expected output:
• If it is just a string, write it in double quotes to show it is a string
• If the class does not have this method, copy what its super class does
• If it has a method call:

• If it is super. then it is specific and copy what the super class method does
• If it is not super. then write the method call itself (not what it does) and circle it

public class E extends F {
public void method2() {

System.out.print("E 2 ");
method1();

}
}

1) Does not have toString(), copy
from parent

2) Does not have method1(),
copy from parent

3) Has method2(), with a print
and a NON super. method call,
write in the print output and
write in and circle
“method1()”

Step 3 – Continue with each of the child classes in order…

G F E H

toString() “G” “F” “F” “F”

method1() “G 1 “ “G 1 “ “G 1 “ “H 1 “

method2() “G 2 “ “F 2 G 2” “E 2 “ + method1() “E 2 “ + method1()

In each cell we will put the expected output:
• If it is just a string, write it in double quotes to show it is a string
• If the class does not have this method, copy what its super class does
• If it has a method call:

• If it is super. then it is specific and copy what the super class method does
• If it is not super. then write the method call itself (not what it does) and circle it

public class H extends E {
public void method1() {

System.out.print("H 1 ");
}

}

1) Does not have toString(), copy
from parent

2) Has method1(), but no
method calls, just write in the
output of the print

3) Has no method2(), copy from
parent … it is important that
we do not (at this point) fill in
what method1() does…

Step 4 – Answer the question using the table

G F E H

toString() “G” “F” “F” “F”

method1() “G 1 “ “G 1 “ “G 1 “ “H 1 “

method2() “G 2 “ “F 2 G 2” “E 2 “ + method1() “E 2 “ + method1()

Process:
1. Go in the order listed in the array
2. If it has a method call [E.method2() and H.method2()], pick the method for the

current class!!!!
3. Write in what the method does.

public class EFGHclient {
public static void main(String[] args) {

G[] elements = {new F(), new E(), new G(), new H()};
for (int i = 0 ; i < elements.length ; i++) {

System.out.println(elements[i]);
elements[i].method1();
System.out.println();
elements[i].method2();
System.out.println();

}
}

}

1st 2nd3rd 4th

F
G 1
F 2 G 2
F
G 1
E 2 G 1
G
G 1
G 2
F
H 1
E 2 H 1

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9

